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Cognitive Code-Division Links with
Blind Primary-System Identification

Ming Li, Member, IEEE, Stella N. Batalama, Member, IEEE, Dimitris A. Pados, Member, IEEE,
Tommaso Melodia, Member, IEEE, Michael J. Medley, Senior Member, IEEE,

and John D. Matyjas, Member, IEEE

Abstract—We consider the problem of cognitive code-division
channelization (simultaneous power and code-channel allocation)
for secondary transmission links co-existing with an unknown
primary code-division multiple-access (CDMA) system. We first
develop a blind primary-user identification scheme to detect the
binary code sequences (signatures) utilized by primary users. To
create a secondary link we propose two alternative procedures
–one of moderate and one of low computational complexity– that
optimize the secondary transmitting power and binary code-
channel assignment in accordance with the detected primary
code channels to avoid “harmful” interference. At the same
time, the optimization procedures guarantee that the signal-
to-interference-plus-noise ratio (SINR) at the output of the
maximum SINR linear secondary receiver is no less than a certain
threshold to meet secondary transmission quality of service (QoS)
requirements. The extension of the channelization problem to
multiple secondary links is also investigated. Simulation studies
presented herein illustrate the theoretical developments.

Index Terms—Blind user identification, code-channel allo-
cation, code-division multiple-access, cognitive radio, dynamic
spectrum access, power allocation, signal-to-interference-plus-
noise ratio.

I. INTRODUCTION

W ITH the rapid proliferation of a variety of consumer
oriented wireless devices, demand for access to radio

spectrum has been growing dramatically and the limited
available spectrum is becoming increasingly congested. At
the same time, location-dependent bands of pre-licensed radio
spectrum may experience low utilization [1]. Cognitive radio
(CR) is an emerging technology aiming at improving spectrum
utilization efficiency by allowing secondary users/networks to
opportunistically share radio spectrum originally licensed by
primary users/networks without causing “harmful” interfer-
ence to them [2]-[5].

Cognitive radio networks can be categorized according to
two modes of operation: cooperation mode and coexistence
mode [6]. In cooperation mode, primary users cooperate
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with secondary users and share information to avoid mutual
interference. In coexistence mode, there is no form of coop-
eration and secondary users must have the ability to detect
the presence of primary users [7], [8] and change behavior
accordingly to avoid mutual interference.

Past work in the young field of cognitive code-division
channelization includes coexistence power control [9] as well
as distributed resource allocation of spectral bands, power,
and data rates among multiple secondary users for multi-
carrier CDMA systems [10]. Cooperation-mode bit rate and
spreading factor adjustments for a secondary CDMA system
under interference-minimizing code assignments were carried
out in [11]. In [12], [13], a secondary maximum signal-
to-interference-plus-noise ratio (SINR) code-division link is
designed subject to SINR requirements for the primary system
which is presumed known (cooperation-mode cognitive radio).
Outside the framework of cognitive code-division altogether,
interesting work in the form of joint beamforming and power
allocation algorithms was reported in [14]-[18]. In particular,
in [14] the radio frequency spectrum of interest was divided
into a set of multiple orthogonal channels and was shared
between primary and secondary networks using orthogonal
frequency division multiple access (OFDMA). In [15]-[17],
joint spatial-channel and power allocation algorithms for cog-
nitive radio networks were developed. In [18], the authors
provide a solution for leasing spectrum for a fraction of time
to secondary users based on the idea that secondary nodes can
earn spectrum access in exchange for transmission assistance
to the primary link (cooperative communications paradigm).

In this work, we focus on coexistence-mode cognitive radio
and investigate the problem of establishing a secondary code-
division link coexisting with an unknown primary CDMA
system. In particular, we investigate –to the best of our
knowledge for the first time in the context of cognitive radio–
the problem of blindly identifying the binary codes/signatures
utilized by primary users when neither channel state infor-
mation nor pilot signaling (training sequence) is available.
Then, we study the design of a power and binary-code-
channel allocation protocol for the secondary link that will
not cause “harmful” interference to the existing primary users.
Since post-processing interference sensing is not feasible in
coexistence mode cognitive radio, to quantify “harm” we
use the periodic-total-square-correlation (PTSC) interference
metric in our optimization problem as the mathematical means
to protect co-channel primary users [2], [19], [20]. At the
same time, to satisfy quality-of-service (QoS) requirements for
the secondary link, the power and code-division optimization

1536-1276/11$25.00 c⃝ 2011 IEEE
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problem is constrained to have SINR at the output of the
maximum SINR linear receiver of the secondary link no less
than a certain threshold. We recognize that the above described
fundamental cognitive code-division radio formulation is, re-
gretfully, a non-convex NP-hard problem. Yet, using herein
existing SINR-maximization signature design methodologies
we are able to develop novel, realizable suboptimum so-
lutions of varying computational complexity with excellent
cognitive system performance characteristics as demonstrated
by simulation studies included in this paper. The theoretical
developments and experiments can be readily extended to
cover multiple secondary links alongside the primary CDMA
system.

The rest of this paper is organized as follows. The code-
division cognitive radio problem formulation is presented in
Section II. A novel primary user identification algorithm is
introduced in Section III. The power allocation and signature
design procedure for a secondary link is developed in Section
IV. In Section V, we extend the procedure to solve for multiple
secondary links. Simulation results are presented in Section VI
and, finally, a few conclusions are drawn in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The following notation is used throughout this paper. Bold-
face lower-case letters indicate column vectors and boldface
upper-case letters indicate matrices; ℂ denotes the set of all
complex numbers, ()𝑇 and ()𝐻 denote the transpose and
transpose-conjugate operation, respectively; I𝐿 is the 𝐿 × 𝐿
identity matrix, ℜ𝔢{⋅} denotes the real part of a complex
number, sgn{⋅} denotes zero-threshold quantization, and 𝔼{⋅}
represents statistical expectation. Finally, ∣ ⋅ ∣, ∥ ⋅ ∥, and ∥ ⋅ ∥𝐹
are the scalar magnitude, vector norm, and matrix Frobenius
norm, respectively.

In the following, we consider a primary code-division sys-
tem with a primary transmitter 𝑃𝑇 and 𝐾 primary receivers
𝑃𝑅𝑖, 𝑖 = 1, 2, . . . ,𝐾 , as shown in Fig. 1. The primary trans-
mitter (for example, base station) 𝑃𝑇 communicates downlink
with the 𝐾 primary receivers 𝑃𝑅𝑖, 𝑖 = 1, 2, . . . ,𝐾 , over dis-
tinct code-division channels defined by individual normalized
binary codes/signatures s𝑖 = 1√

𝐿
{±1}𝐿, 𝑖 = 1, 2, . . . ,𝐾 ,

where 𝐿 is the signature length (system processing gain). We
consider also a potential concurrent secondary code-division
link in the spectrum band of the primary downlink channel
between a secondary transmitter 𝑆𝑇 and receiver 𝑆𝑅. If
the primary system is frequency-division-duplex (FDD), then
the secondary 𝑆𝑇 -to-𝑆𝑅 link will work on the frequency
licensed to the downlink channel of the primary system and
can operate at any time. If the primary system is time-division-
duplex (TDD), then the secondary link can transmit data only
during the downlink slot of the primary system. The secondary
communication link is activated, whenever possible, with a
(normalized) binary signature c = 1√

𝐿
{±1}𝐿 and transmitting

power 𝑃 > 0. All transmitted signals, primary and secondary
when appropriate, are assumed/modeled to propagate over
multipath Rayleigh fading channels and experience additive
white Gaussian noise (AWGN).

We first assume that the secondary transmitter 𝑆𝑇 is quiet
and we examine how the signal sent by 𝑃𝑇 is observed by
𝑆𝑅. After carrier demodulation, chip matched filtering and

Fig. 1. Primary/secondary code-division system model of a primary trans-
mitter 𝑃𝑇 , 𝐾 primary receivers 𝑃𝑅𝑖, 𝑖 = 1, 2, . . . , 𝐾 , and a secondary
transmitter/receiver pair 𝑆𝑇 , 𝑆𝑅 (all received signals exhibit multipath
Rayleigh fading).

sampling at the chip rate over a presumed multipath extended
data bit period of 𝐿𝑀 = 𝐿 + 𝑀 − 1 chips where 𝑀 is
the number of resolvable multipaths, the observed data vector
y(𝑛) ∈ ℂ𝐿𝑀 by 𝑆𝑅 takes the following general form1

y(𝑛) =

𝐾∑
𝑖=1

√
𝐸𝑖𝑏𝑖(𝑛)Hs𝑖 + i+ n, 𝑛 = 1, 2, . . . , (1)

where H ∈ ℂ𝐿𝑀×𝐿 is the multipath channel matrix between
𝑃𝑇 and 𝑆𝑅

H ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ1 0 . . . 0 0
ℎ2 ℎ1 . . . 0 0
...

...
...

...
...

ℎ𝑀 ℎ𝑀−1 0 0
0 ℎ𝑀 0 0
...

...
...

...
0 0 . . . ℎ𝑀 ℎ𝑀−1

0 0 . . . 0 ℎ𝑀

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

with entries ℎ𝑚 ∈ ℂ, 𝑚 = 1, . . . ,𝑀 , considered as com-
plex Gaussian random variables to model fading phenomena,√

𝐸𝑖 > 0 and 𝑏𝑖(𝑛) ∈ {±1} are the amplitude level and 𝑛th
transmitted bit of primary user 𝑖, 𝑖 = 1, . . . ,𝐾 , respectively,
i ∈ ℂ𝐿𝑀 denotes multipath induced inter-symbol-interference
(ISI), and n is a zero-mean additive white Gaussian noise
(AWGN) vector with autocorrelation matrix 𝜎2I𝐿𝑀 . The
information bits 𝑏𝑖(𝑛) are viewed as binary equiprobable
random variables that are independent within a user stream
(in 𝑛 = 1, 2, . . .) and across users (in 𝑖 = 1, 2, . . . ,𝐾). Since
the effect of ISI is, arguably, negligible for most applications
of practical interest where the number of resolvable multipaths
is much less than the processing gain, for mathematical con-
venience we will not consider the ISI terms in our theoretical
developments that follow2. Thus, the primary users’ signal

1Equation (1) assumes that 𝑆𝑅 is symbol-synchronous to 𝑃𝑇 . While this is
not a technical requirement at all for the secondary link design problem set and
solved herein based on the periodic cross-channel total squared correlation,
it greatly simplifies the presentation and notation of this material.

2However, naturally ISI will be considered and accounted for in our
simulation studies.

2



LI et al.: COGNITIVE CODE-DIVISION LINKS WITH BLIND PRIMARY-SYSTEM IDENTIFICATION 3745

observed by 𝑆𝑅 in (1) is simplified/approximated by

y(𝑛) =
𝐾∑
𝑖=1

√
𝐸𝑖𝑏𝑖(𝑛)Hs𝑖 + n, 𝑛 = 1, 2, . . . . (3)

In our cognitive system model, the secondary link is taken
to be chip-synchronous to the primary network (worst case
interference scenario) with the same chip rate and symbol-
synchronous (see Footnote 1). Also, without loss of generality
and for simplicity in notation, we assume that the multipath
channels between 𝑃𝑇 and 𝑃𝑅𝑖, 𝑖 = 1, . . . ,𝐾 , 𝑃𝑇 and 𝑆𝑅,
and 𝑆𝑇 and 𝑆𝑅, all have the same number of resolvable paths.
Then, when the secondary communication link is activated
with a (normalized) binary signature code c = 1√

𝐿
{±1}𝐿 and

transmit power 𝑃 > 0, the aggregate signal vector received
by 𝑆𝑅 can be expressed as

r(𝑛) =
√

𝑃𝑏(𝑛)Gc+ y(𝑛), 𝑛 = 1, 2, . . . , (4)

where G ∈ ℂ𝐿𝑀×𝐿 is the 𝑆𝑇 to 𝑆𝑅 channel matrix with
multipath channel coefficients 𝑔𝑚 ∈ ℂ, 𝑚 = 1, . . . ,𝑀 , and
y(𝑛) is given by (3).

Information bit detection at 𝑆𝑅 is carried out via linear
maximum SINR filtering (or, equivalently, minimum mean
square error filtering) as follows

�̂�(𝑛) = sgn
{
ℜ𝔢{w𝐻

𝑚𝑎𝑥𝑆𝐼𝑁𝑅r(𝑛)}
}

, 𝑛 = 1, 2, . . . , (5)

where w𝑚𝑎𝑥𝑆𝐼𝑁𝑅 = 𝑐R−1Gc ∈ ℂ𝐿𝑀 , 𝑐 > 0, is
the maximum SINR filter and R = E{yy𝐻} is the au-
tocorrelation matrix of the y(𝑛) signal in (3) that con-
stitutes primary-system disturbance to 𝑆𝑅. Practically, R
is estimated by averaging over 𝑁 ≥ 𝐿𝑀 observation
samples r(𝑛) when 𝑆𝑇 is silent (𝑃 = 0), R̂(𝑁) =
1
𝑁

∑𝑁
𝑛=1 r(𝑛)r(𝑛)

𝐻 = 1
𝑁

∑𝑁
𝑛=1 y(𝑛)y(𝑛)

𝐻 . The output
SINR of the filter w𝑚𝑎𝑥𝑆𝐼𝑁𝑅 can be calculated to be

Γ ≜ 𝔼{∣w𝐻
𝑚𝑎𝑥𝑆𝐼𝑁𝑅(

√
𝑃𝑏Gc)∣2}

𝔼
{∣w𝐻

𝑚𝑎𝑥𝑆𝐼𝑁𝑅y∣2
} = 𝑃c𝑇G𝐻R−1Gc. (6)

To attain a certain QoS level for the secondary link, we need
to jointly design the binary signature c and the transmitting
power 𝑃 to have the SINR value Γ at the output of the max-
imum SINR filter w𝑚𝑎𝑥𝑆𝐼𝑁𝑅 no less than a given threshold
𝛾 > 0, i.e. Γ ≥ 𝛾.

At the same time, due to the coexistence of the secondary
link with the primary network, interference is introduced to
the primary receivers. The secondary link is to be allowed to
activate only if the interference to each primary receiver is not
“harmful.” The difficulty is that in cognitive radio networks
operating in coexistence-mode, the primary network does not
cooperate/talk to secondary users and the latter do not have
global knowledge of system parameters, such as the multipath
channel coefficients [ℎ̃𝑖,1, . . . , ℎ̃𝑖,𝑀 ] between 𝑃𝑇 and 𝑃𝑅𝑖, or
the channel coefficients [𝑔𝑖,1, . . . , 𝑔𝑖,𝑀 ] between 𝑆𝑇 and 𝑃𝑅𝑖,
𝑖 = 1, 2, . . . ,𝐾 (see Fig. 1), or the primary binary signatures
s𝑖, 𝑖 = 1, . . . ,𝐾 , in (3) and the filters utilized by each primary
user receiver3. Therefore, post-processing interference sensing
is not feasible.

3In fact, even if global system parameter values (code channels, transmis-
sion power values, channel coefficients, receive filters) were to be provided
to the secondary system by the primary system, SINR optimized secondary
link design under primary-system SINR constraints is a non-convex, NP-hard
problem [12], [13].

Toward a realistic, realizable solution to the problem of
coexistence secondary link design, we recall that the periodic
(cyclic) total squared cross-correlation (PTSC) value [19], [20]
is a useful measure to evaluate multiple access interference
(MAI) when channels exhibit multipath behavior. In this spirit,
we propose to use the PTSC value as a metric to evaluate
the interference caused by the secondary link. For notational
simplicity, let s𝑖∣𝑙, 𝑖 = 1, . . . ,𝐾 , denote the cyclic right-
shifted version of s𝑖 ∈ 1√

𝐿
{±1}𝐿, by 𝑙 bit positions when

𝑙 = 0, 1, . . . , 𝐿 − 1, and cyclic left-shifted version of s𝑖 by 𝑙
bit positions when 𝑙 = 0,−1, . . . , 1 − 𝐿, (hence, s𝑖∣0 = s𝑖).
The PTSC between signatures c and s𝑖 for multipath shifts up
to lag 𝑀 is defined as

PTSC(c, s𝑖) ≜
𝑀∑

𝑙=−𝑀

∣c𝑇 s𝑖∣𝑙∣2, 𝑖 = 1, . . . ,𝐾. (7)

In this context, we define the generalized correlation in-
terference by a secondary link with power 𝑃 > 0 to the 𝑖th
primary receiver as

ℐ𝑖 ≜ 𝑃 ⋅ PTSC(c, s𝑖), 𝑖 = 1, . . . ,𝐾. (8)

We understand that ℐ𝑖 serves as a simple “worst-case” measure
of the effect of the secondary link on the 𝑖th primary user.
Then, in this context, the secondary link can be activated by
assigning a signature c and power 𝑃 > 0 if the interference to
every primary user is less than a threshold ℐth > 0: ℐ𝑖 < ℐth
∀𝑖 = 1, . . . ,𝐾 . If

ℐ𝑚𝑎𝑥 ≜ 𝑚𝑎𝑥{ℐ𝑖 : 𝑖 = 1, . . . ,𝐾} (9)

is the strongest generalized interference to primary receivers,
the activation condition is equivalent to ℐ𝑚𝑎𝑥 < ℐth.

Our objective is to jointly design the binary signature c
and the transmitting power 𝑃 > 0 for the secondary link to
minimize ℐ𝑚𝑎𝑥 under the constraint that the secondary link
achieves its pre-determined SINR requirement 𝛾:

minimize
𝑃>0, c∈ 1√

𝐿
{±1}𝐿

ℐ𝑚𝑎𝑥 ≜ 𝑚𝑎𝑥{𝑃 ⋅PTSC(c, s𝑖) : 𝑖 = 1, . . . ,𝐾}
(10)

s. t. Γ ≜ 𝑃c𝑇G𝐻R−1Gc ≥ 𝛾. (11)

Then, if the resulting minimized ℐ𝑚𝑎𝑥 is indeed less than ℐth,
the secondary link can be activated; otherwise, it is kept idle.

The cognitive code-division channelization problem formu-
lated in (10), (11) requires knowledge of all active primary-
user binary signatures s𝑖, 𝑖 = 1, . . . ,𝐾 , for the evaluation
of the created interference in the form of PTSC(c, s𝑖),
𝑖 = 1, . . . ,𝐾 . However, in our assumed coexistence mode
of operation, the secondary network cannot obtain such
knowledge directly from primary networks. Therefore, before
starting to solve the channelization problem in (10), (11), the
secondary network needs to blindly detect (i) the number of
active primary users 𝐾 and (ii) their binary signatures s𝑖,
𝑖 = 1, . . . ,𝐾 . With respect to item (i) (population size iden-
tification problem), we can utilize for example the algorithm
developed recently in [21]. Due to space limitations, in this
paper we do not deal further with this issue and instead assume
that 𝐾 is correctly identified. With respect to item (ii), in the
next section we develop an iterative-least-square (ILS)-based
procedure that can blindly detect the primary users’ binary
signatures s𝑖, 𝑖 = 1, . . . ,𝐾 , from the observed primary signal
y(𝑛).

3
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TABLE I
ITERATIVE LEAST-SQUARES PROCEDURE

1) 𝑑 := 0; initialize B̂(0) ∈ {±1}𝐾×𝑁 arbitrarily.
2) 𝑑 := 𝑑+ 1;

V̂(𝑑) := Y(B̂(𝑑))𝑇
[
(B̂(𝑑))(B̂(𝑑))𝑇

]−1
;

B̂(𝑑) := sgn

{
ℜ𝔢

[[
(V̂(𝑑−1))𝐻 (V̂(𝑑−1))

]−1
(V̂(𝑑−1))𝐻Y

]}
.

3) Repeat Step 2 until (B̂(𝑑), V̂(𝑑)) = (B̂(𝑑−1), V̂(𝑑−1)).

III. PRIMARY-SYSTEM IDENTIFICATION

If we denote the (energy inclusive) channel processed
signature by

v𝑖
△
=

√
𝐸𝑖Hs𝑖, 𝑖 = 1, 2, . . . ,𝐾, (12)

then the observed signal in (3) can be expressed as

y(𝑛) =

𝐾∑
𝑖=1

v𝑖𝑏𝑖(𝑛) + n = Vb(𝑛) + n, 𝑛 = 1, 2, . . . , (13)

where V𝐿𝑀×𝐾 ≜ [v1, . . . ,v𝐾 ] is the effective signature
matrix and b(𝑛) ≜ [𝑏1(𝑛), . . . , 𝑏𝐾(𝑛)]𝑇 is the vector of bits
for all 𝐾 users at the 𝑛th transmission period. If 𝑆𝑅 is able
to collect 𝑁 observation vectors y(𝑛), 𝑛 = 1, 2, . . . , 𝑁 , then
(13) can be rewritten in matrix form as

Y = VB+N (14)

where Y ∈ ℂ𝐿𝑀×𝑁 is the observation matrix, B ≜
[b(1), . . . ,b(𝑁)] is the 𝐾 ×𝑁 data matrix that contains the
𝑁 bits transmitted for each of the 𝐾 primary users, and N is
an 𝐿𝑀 ×𝑁 Gaussian noise matrix.

To detect the binary signatures s𝑖, 𝑖 = 1, . . . ,𝐾 , we first
estimate the channel processed signature set V from the
observation matrix Y. Our approach begins by formulating
the signature set estimation problem as a joint detection and
estimation problem with the following least squares (LS)
solution

V̂, B̂ = arg min
B∈{±1}(𝐾×𝑁),

V∈ℂ
𝐿𝑀×𝐾

∥Y −VB∥2𝐹 . (15)

The above LS solution is maximum-likelihood optimal as
long as N is white Gaussian. In any case, regretfully, joint
detection and estimation by (15) has complexity exponential
in 𝑁𝐾 . We consider this cost unacceptable and attempt to
reach a quality approximation of the solution by alternating
least squares estimates of V and B, iteratively, as described
below.

A. Iterative Least Squares Procedure

The basic idea behind such an iterative least squares (ILS)
solution [22]-[25] is to compute an LS update of one of
the unknown (matrix) parameters conditioned on a previously
obtained estimate of the other (matrix) parameter and continue
on until convergence is observed. The iterative least-squares
procedure for the solution of our problem in (15) is presented
in Table I. Superscripts in Table I denote the iteration index.
Derivation details are presented in the Appendix.

We understand that convergence of the developed iterative
least squares procedure to a globally optimal LS-solution of
(15) is not guaranteed in general. The quality (least-squares
fit) of the end convergence point depends heavily on the
initialization point and arbitrary initialization –which at first
sight is unavoidable for blind primary system identification–
offers little assurance that the iterative scheme will lead
us to appropriate, “reliable” (close to minimal least-squares
fit) solutions. Re-initialization and re-execution4 of the ILS
procedure is always possible but the challenge is how to assess
whether solutions returned by the ILS procedure are reliable
or not without any side information or pilot signaling. The
rest of this section is devoted to addressing this challenge.

Since B̂ and V̂ are jointly detected and estimated, corre-
spondingly, if one is not reliable, neither is the other in general.
We first examine the reliability of the bit matrix decision
B̂ = [b̂1, . . . , b̂𝐾 ]𝑇 returned by the ILS procedure of Table I.
The sample cross-correlation between any two bit streams is

𝜂𝑖,𝑗 ≜ b̂𝑇
𝑖 b̂𝑗/𝑁, 𝑖 ∕= 𝑗, 𝑖, 𝑗 = 1, . . . ,𝐾. (16)

Formally, the true information bits are independent within
user streams and across users. If 𝜂𝑖,𝑗 were to be viewed
as approximately normally distributed with zero mean and
variance 1

𝑁 , then the probability of ∣𝜂𝑖,𝑗 ∣, 𝑖 ∕= 𝑗, being
larger than, say, the threshold value 3√

𝑁
is very low at

about 0.3% (we can calculate Pr(∣𝜂𝑖,𝑗 ∣ > 3√
𝑁
) ≈ 0.003).

Motivated by this calculation, we introduce below Criterion
1 that classifies convergence points of the ILS procedure in
Table I as “unreliable” based on the sample statistics of the
returned data matrix B̂.

Criterion 1: If ∣𝜂𝑖,𝑗 ∣ > 3√
𝑁

for some 𝑖 ∕= 𝑗 ∈ {1, 2, . . . ,𝐾},
then (B̂, V̂) returned by the ILS procedure in Table I are
classified as “unreliable.” ■

Criterion 1 provides the means for coarse identification of
unreliable solutions. An unreliable convergence point would
then trigger re-initialization and re-execution of the ILS
procedure in Table I. To enhance the end accuracy of the
blind primary-system identification procedure, we propose one
additional criterion based on the returned estimated effective
signature matrix V̂. We will motivate our proposal by exam-
ining the normalized cross-correlation between the estimated
channel processed signatures v̂𝑖 returned by the ILS procedure
upon convergence and the true channel processed signatures
v𝑖, 𝑖 = 1, . . . ,𝐾 . Based on 𝑁 = 128 snapshots for a system
with 𝐾 = 4 primary users with equal 6dB SNR and processing
gain 𝐿 = 31 (Gold signature codes), we run the Criterion
1-equipped ILS procedure 20 times. The distribution of the
twenty returned solutions of 𝜃𝑖 ≜ v̂𝐻

𝑖 v𝑖

∥v̂𝑖∥∥v𝑖∥ for signal 𝑖 = 1
in Fig. 2 (representative of all other signals) reveals that (𝑖)
Criterion 1 is not by itself sufficient to eliminate erroneous
solutions, however (𝑖𝑖) there exist “reliable” regions/clusters
in which most of the Criterion 1-equipped ILS convergence
points lie close to the true channel processed signatures. The
basic idea behind our second and final refinement of the ILS
blind primary-system identification procedure is to identify
and average these reliable clustered estimates. Of course,

4In practical implementations, re-initialization and re-execution of the ILS
procedure may also be needed whenever numerical instabilities create a rank
deficient matrix B̂(𝑑) in Table I and B̂(𝑑)B̂(𝑑)𝑇 is not invertible.

4
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Fig. 2. Experimentation with ILS of Table I under Criterion 1: Distribution
of normalized cross-correlation between v̂1 and v1 after twenty runs (𝐾 =
4, 𝐿 = 31, 𝑁 = 128, SNR𝑖 = 6dB, 𝑖 = 1, 2, 3, 4).

identification of the reliable estimates is not a trivial task due
to our complete lack of knowledge of v𝑖 (or s𝑖).

In this context, assume that we have 𝐷 estimates of v𝑖

denoted by v̂
(𝑗)
𝑖 , 𝑖 = 1, . . . ,𝐾 , 𝑗 = 1, . . . , 𝐷, obtained by

𝐷 runs of the Criterion 1-equipped ILS procedure. From the
example of Fig. 2, we notice that reliable estimates v̂

(𝑗)
𝑖 of

v𝑖 have high normalized cross-correlation (close to 1) with
each other, while they have low normalized cross-correlation
with other unreliable estimates of v𝑖. In contrast, unreliable
estimates tend to have low normalized cross-correlation with
each other. Therefore, the reliability of v̂(𝑗)

𝑖 may be quantified
by examining the sum-cross-correlation with the rest v̂(𝑡)

𝑖 , 𝑡 ∕=
𝑗,

𝜌
(𝑗)
𝑖 ≜

𝐷∑
𝑡=1,𝑡∕=𝑗

∣v̂(𝑗)𝐻
𝑖 v̂

(𝑡)
𝑖 ∣

∥v̂(𝑗)
𝑖 ∥∥v̂(𝑡)

𝑖 ∥
. (17)

A reasonable threshold value for binary reliability classifica-
tion may be the average value

𝜌𝑖 ≜
1

𝐷

𝐷∑
𝑗=1

𝜌
(𝑗)
𝑖 , 𝑖 = 1, . . . ,𝐾, (18)

utilized in the proposed Criterion 2 below.
Criterion 2: Let v̂

(𝑗)
𝑖 be the estimates of v𝑖 returned by

𝐷 arbitrary initializations of the Criterion 1-equipped ILS
procedure of Table I, 𝑖 = 1, . . . ,𝐾 , 𝑗 = 1, . . . , 𝐷. If 𝜌

(𝑗)
𝑖 ≥ 𝜌𝑖,

then v̂
(𝑗)
𝑖 is considered a reliable estimate of the v𝑖; otherwise

we declare it as unreliable. ■
Next, we average our reliable (according to Criterion 2)

estimates of the channel processed signatures v𝑖 to produce
one last high-quality initialization of the ILS algorithm of
Table I. Let 𝒮𝑖 denote the set of all reliable estimates of v𝑖

according to Criterion 2 and let ∣𝒮𝑖∣ denote the cardinality of
𝒮𝑖. Our averaged estimate of the matrix V is now given by

V̂ with

V̂ ≜
[
v̂1, . . . , v̂𝐾

]
where v̂𝑖 =

1

∣𝒮𝑖∣
∑
𝑗∈𝒮𝑖

v̂
(𝑗)
𝑖 , 𝑖 = 1 . . . ,𝐾,

(19)
i.e. v̂𝑖 is the average over all reliable estimates of v𝑖 according
to Criterion 2. We execute ILS in Table I a final time

TABLE II
CROSS-CORRELATION ENHANCED ILS

For 𝑗 := 1 to 𝐷
1) Execute ILS of Table I with arbitrary initialization and obtain

estimates v̂𝑖, 𝑖 = 1, . . . , 𝐾 .
2) If estimates are reliable according to Criterion 1,

let v̂(𝑗)
𝑖 := v̂𝑖, 𝑖 = 1, . . . , 𝐾;

else go to 1).
End
For 𝑖 := 1 to 𝐾

3) Identify reliable estimates of v𝑖 according to Criterion 2.
4) Calculate average over all reliable estimates v̂𝑖 by (19).

End

5) Set V̂ ≜ [v̂1, . . . , v̂𝐾 ].
6) Execute ILS of Table I with initialization

B̂(0) = sgn

{
ℜ𝔢

[(
V̂

𝐻
V̂

)−1

V̂
𝐻
Y

]}
.

initialized at B̂(0) = sgn

{
ℜ𝔢

[(
V̂

𝐻

V̂

)−1

V̂
𝐻

Y

]}
. We dub

ILS with both Criteria 1 and 2 incorporated Cross-Correlation
Enhanced ILS (CC-ILS) and summarize the complete proce-
dure in Table II.

B. Detection of Primary Binary Signatures

After obtaining an estimated (energy inclusive) channel
processed signature set V̂ by CC-ILS of Table II, we develop
another procedure to extract the individual primary binary
signatures s𝑖, 𝑖 = 1, . . . ,𝐾 , by decomposition of V̂. The
channel processed signatures can be rewritten as

v𝑖 =
√

𝐸𝑖S𝑖h, 𝑖 = 1, . . . ,𝐾, (20)

where h = [ℎ1, . . . , ℎ𝑀 ]𝑇 and

S𝑖 ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠𝑖(1) 0
. . .

... 𝑠𝑖(1)

𝑠𝑖(𝐿)
...

. . .
0 𝑠𝑖(𝐿)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐿𝑀×𝑀

. (21)

If the binary signatures s𝑖, 𝑖 = 1, . . . ,𝐾 , were known, by (20)
we could estimate

√
𝐸𝑖h as

√̂
𝐸𝑖h = (S𝑇

𝑖 S𝑖)
−1S𝑇

𝑖 v̂𝑖, 𝑖 = 1, . . . ,𝐾, (22)

where v̂𝑖 is the 𝑖th column of matrix V̂. Then, a quality
estimate of h (scaled) could be produced by averaging,

ĥ =
1

𝐾

𝐾∑
𝑖=1

√̂
𝐸𝑖h, (23)

to create a matrix channel estimate Ĥ by (2). Given Ĥ (and
v̂𝑖), one could detect the binary signatures by

ŝ𝑖 =
1√
𝐿
sgn

{
ℜ𝔢{(Ĥ𝐻Ĥ)−1Ĥ𝐻 v̂𝑖}

}
, 𝑖 = 1, . . . ,𝐾. (24)

The proposed individual binary signature extraction algorithm
from V̂ is now ready. Initialize s𝑖 ∈ 1√

𝐿
{±1}𝐿, 𝑖 = 1, . . . ,𝐾 ,

5
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Fig. 3. Performance of blind primary-users identification algorithm: Primary
transmitter 𝑃𝑇 has 𝐾 downlink users with length 𝐿 = 31 Gold signatures.
The transmitted signal propagates over a 3-path Rayleigh fading channel to
secondary receiver 𝑆𝑅 that collects 𝑁 observation samples to run Table II
procedure followed by execution of (22)-(24).

arbitrarily, and alternate computation between (22), (23), and
(24), iteratively. Stop when convergence is observed5.

To illustrate briefly the proposed primary binary signature
detection algorithm, we consider a primary downlink CDMA
system with 𝐾 = 4 or 𝐾 = 8 active users that utilize
Gold signatures with length 𝐿 = 31. The primary users’
signals are transmitted with equal power over a multipath
Rayleigh fading channel with 𝑀 = 3 resolvable paths in
the presence of additive white Gaussian noise. 𝑆𝑅 is able
to collect 𝑁 = 256, 384, or 512 observation samples and
employs our proposed method to extract the primary users’
binary signatures. The experiment is repeated 105 times with
randomly drawn channel coefficients. In Fig. 3, we plot the
probability of correct identification of all binary signatures,
Pr(ŝ𝑖 = s𝑖 ∀𝑖 = 1, . . . ,𝐾), as a function of SNR. It can be
seen that even under low/moderate SNR values the proposed
method can correctly extract all signatures with sufficient
sample support (secondary receiver observation time interval).
It is worth pointing out that, experimentally, when errors do
occur only one or two signatures have few chip-bit errors only.

Having addressed the blind primary system identification
problem -arguably- satisfactorily, in the next section we at-
tempt to solve the secondary power and code-channel alloca-
tion problem of (10) to enable most frequent activation of the
secondary link.

IV. SECONDARY CODE-DIVISION LINK CHANNELIZATION

The secondary link has to satisfy the SINR constraint (11);
namely, that the SINR of the secondary receiver 𝑆𝑅 at the
maximum-SINR linear filter output is no less than a QoS
requirement 𝛾: 𝑃c𝑇G𝐻RGc ≥ 𝛾, 𝛾 > 0. To that respect,
it suffices to set the power value 𝑃 > 0 to

𝑃 =
𝛾

c𝑇G𝐻RGc
(25)

5The iterative procedure may be re-executed with distinct initialization if
convergence cannot be observed after sufficient iterations.

and the SINR constraint (11) is always satisfied with equality.
Then, the optimization problem in (10) is equivalent to

minimize
c∈ 1√

𝐿
{±1}𝐿

ℐ𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑃 ⋅ PTSC(c, s𝑖) : 𝑖 = 1, . . . ,𝐾}

s. t. 𝑃 = 𝛾
c𝑇G𝐻RGc . (26)

The maximum generalized correlation interference ℐ𝑚𝑎𝑥 is
the product of two components, transmit power 𝑃 and maxi-
mum PTSC value. Thus, to minimize ℐ𝑚𝑎𝑥 we need to design
a binary signature c to minimize the product of the required
transmit power 𝑃 = 𝛾

c𝑇 G𝐻RGc times 𝑚𝑎𝑥
𝑖=1,...,𝐾

{PTSC(c, s𝑖)}.
This problem is still non-convex NP-hard (see Footnote 1 and
[12], [13]). We must, therefore, pursue (disjoint) suboptimal
design procedures if we wish to keep the computational
complexity manageable. At first, we look at minimizing 𝑃
alone. The binary signature c that minimizes 𝑃 maximizes
the denominator of (25) which is the 𝑆𝑅 output SINR with
unit 𝑆𝑇 transmit power:

c = arg max
c∈ 1√

𝐿
{±1}𝐿

c𝑇Ac (27)

where A ≜ G𝐻RG. At this point, the SINR-maximizing
binary signature designs of polynomial complexity developed
in [26], [27] can be used directly. We recall that in [26]
the binary signature vector is optimized under a rank-2 ap-
proximation of the matrix A, while in [27] the arcs of least
SINR decrease from the real maximum SINR solution are
evaluated. Both algorithms first generate 𝐿 candidate binary
signatures6, denoted by q𝑗 ∈ 1√

𝐿
{±1}𝐿, 𝑗 = 1, . . . , 𝐿, which

can provide high output SINR. Then, the signature among
them with highest output SINR is selected. While the highest-
SINR signature minimizes the transmitting power 𝑃 required
to satisfy any given QoS constraint, it may result to high values
of PTSC with respect to primary user signatures and conse-
quently let the secondary link introduce strong interference to
the primary system. Therefore, we propose to evaluate all 𝐿
binary signatures q𝑗 ∈ 1√

𝐿
{±1}𝐿, 𝑗 = 1, . . . , 𝐿, returned by

the solver of (27) in [26] or [27] in our interference metric
for the 𝑖th primary user

ℐ𝑗,𝑖 = 𝑃𝑗 ⋅ PTSC(q𝑗 , s𝑖), 𝑗 = 1, . . . , 𝐿; 𝑖 = 1, . . . ,𝐾, (28)

and find the maximal generalized correlation interference
value caused by q𝑗 , ℐ𝑗,𝑚𝑎𝑥 = max{ℐ𝑗,𝑖 : 𝑖 = 1, . . . ,𝐾},
𝑗 = 1, . . . , 𝐿. Then, we choose the signature, power pair
(q𝑗∗ , 𝑃𝑗∗) which has the least maximal interference. If the
resulting maximal interference by (q𝑗∗ , 𝑃𝑗∗) is introduced
to the 𝑖∗th primary user, i.e. ℐ𝑗∗,𝑖∗ = min{ℐ𝑗,𝑚𝑎𝑥 : 𝑗 =
1, . . . , 𝐿}, and still ℐ𝑗∗,𝑖∗ < ℐth, the secondary link is allowed
to access the channel by assigning signature c = q𝑗∗ and
power 𝑃 = 𝑃𝑗∗ . We refer to this method of selecting a pair
of signature and power from the candidate set as passive
interference suppression and outline the procedure in Table
III.

The secondary link design method in Table III exclusively
focuses on transmit power minimization. The PTSC factor

6We recall that [27] finds (𝐿𝑇−𝑇+1) binary sequences that are closest to
𝑇 arcs of least SINR decrease in the 𝑙2 sense. In this paper, we only consider
one slowest descent arc and generate 𝐿 binary sequences. This is sufficient
to closely approximate the performance level reached when all 𝐿−1 slowest
descent arcs are considered.

6
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TABLE III
SECONDARY LINK SIGNATURE AND POWER DESIGN W/ PASSIVE

INTERFERENCE SUPPRESSION

Input A := G𝐻RG
Obtain q𝑗 , 𝑗 = 1, . . . , 𝐿 as solution candidates for (27) by [26] or [27].
Calculate 𝑃𝑗 , 𝑗 = 1, . . . , 𝐿, by (25).
Calculate ℐ𝑗,𝑖, 𝑗 = 1, . . . , 𝐿, 𝑖 = 1, . . . , 𝐾 , by (28) and
ℐ𝑗,𝑚𝑎𝑥 = 𝑚𝑎𝑥{ℐ𝑗,𝑖 : 𝑖 = 1, . . . ,𝐾}.

Select 𝑗∗, 𝑖∗ such that ℐ𝑗∗,𝑖∗ = 𝑚𝑖𝑛{ℐ𝑗,𝑚𝑎𝑥 : 𝑗 = 1, . . . , 𝐿}.
Output 𝑃𝑗∗ , q𝑗∗ , and ℐ𝑗∗,𝑖∗ .
If ℐ𝑗∗,𝑖∗ < ℐth,

transmit on channel 𝑞𝑗∗ with power 𝑃𝑗∗ ;
else seize

is, of course, evaluated and accounted for in (28) but not
actively optimized (minimized). To further reduce the max-
imum interference caused to the primary system and further
improve the chances of spectrum sharing, we next propose
to iteratively adjust the binary channel signature to actively
avoid interference by jointly reducing the PTSC value with
the most impacted at each time 𝑖∗th primary user’s signature
s𝑖∗ , as well as minimize the transmit power.

Define S̃𝑖∗ ≜
[
s𝑖∗∣−𝑀 , . . . , s𝑖∗∣0, . . . , s𝑖∗∣𝑀

]
and calcu-

late PTSC(c, s𝑖∗) = c𝑇 S̃𝑖∗ S̃
𝑇
𝑖∗c. To combine the SINR-

optimization problem of (27) with the PTSC suppression
task, after executing the procedure in Table III we update
A = G𝐻RG − 𝛼S̃𝑖∗ S̃

𝑇
𝑖∗ where 𝛼 > 0 is an introduced

weighting factor. Then, by re-executing the procedure in
Table III with the updated A, we obtain a new optimal
pair (q𝑗∗ , 𝑃𝑗∗) and new maximum-interference ℐ𝑗∗,𝑖∗ . If the
new maximum-interference ℐ𝑗∗,𝑖∗ is reduced, we iteratively
update A ← A − 𝛼S̃𝑖∗ S̃

𝑇
𝑖∗ and re-execute the algorithm in

Table III. This procedure will be stopped when the maximum
interference cannot be suppressed further. We outline the
procedure in Table IV.

Duplexing of the secondary link can be implemented in
TDD mode by switching the roles of transmitter and receiver.
The reverse secondary link can be activated by a new pair of
transmit power and channel code/signature values calculated
by the same algorithm in Table III or IV to satisfy reverse
link QoS requirements. The following section is devoted to
the generalization of the channelization problem to multiple
secondary receivers (one-to-many secondary downlink trans-
missions).

V. DESIGN OF MULTIPLE SECONDARY CODE-DIVISION

LINKS

In this section, we extend the study to cover code-division
channelization for multiple secondary links. Particularly, as
shown in Fig. 4, we consider the scenario where an 𝑆𝑇
attempts to communicate downlink with 𝑄 potential 𝑆𝑅𝑠7. Let
𝒞 = {1, . . . , 𝑄} be the set of all secondary link indices which
attempt to share the radio spectrum. Among the 𝑄 potential
secondary links, 𝐾𝑆 ≥ 0 secondary links will be activated by
assigning to each a (normalized) signature c𝑘 = 1√

𝐿
{±1}𝐿

and transmitting power 𝑃𝑘 > 0, 𝑘 ∈ 𝒮 ⊆ 𝒞 where 𝒮 represents
the set of active secondary links.

7Multiple one-to-many secondary downlinks may be treated sequentially
establishing one secondary downlink at a time using techniques presented in
this section, treating previously established secondary downlinks as part of a
“virtual primary system.”

TABLE IV
SECONDARY LINK SIGNATURE AND POWER DESIGN W/ ACTIVE

INTERFERENCE AVOIDANCE

Input R, G, and s𝑖, 𝑖 = 1, . . . , 𝐾
𝑑 := 0.
A := G𝐻RG.
Obtain 𝑃𝑗∗ , q𝑗∗ , and ℐ𝑗∗,𝑖∗ by Table III.
𝑃 𝑑 := 𝑃𝑗∗ , c𝑑 := q𝑗∗ , ℐ𝑑𝑚𝑎𝑥 := ℐ𝑗∗,𝑖∗ .

While 𝑑 = 0 or ℐ𝑑𝑚𝑎𝑥 < ℐ(𝑑−1)
𝑚𝑎𝑥

𝑑 := 𝑑+ 1;
A← A− 𝛼S̃𝑖∗ S̃𝑇

𝑖∗ ;
obtain 𝑃𝑗∗ , q𝑗∗ , and ℐ𝑗∗,𝑖∗ by Table III;
𝑃 𝑑 := 𝑃𝑗∗ , c𝑑 := q𝑗∗ , ℐ𝑑𝑚𝑎𝑥 := ℐ𝑗∗,𝑖∗ .

End
Output 𝑃 (𝑑−1), c(𝑑−1), and ℐ(𝑑−1)

𝑚𝑎𝑥 .
If ℐ𝑑−1

𝑚𝑎𝑥 < ℐth,
transmit on channel c(𝑑−1) with power 𝑃 (𝑑−1);

else seize.

Fig. 4. Primary/secondary code-division system model of a primary
transmitter 𝑃𝑇 , 𝐾 primary receivers 𝑃𝑅𝑖, 𝑖 = 1, 2, . . . ,𝐾 , a secondary
transmitter 𝑆𝑇 , and 𝑄 secondary receivers 𝑆𝑅𝑖, 𝑖 = 1, 2, . . . , 𝑄 (all receives
signals exhibit multipath Rayleigh fading).

The discrete time received signal vector of the 𝑘th 𝑆𝑅 can
be expressed as

r𝑘(𝑛)=
√

𝑃𝑘𝑏𝑘(𝑛)G𝑘c𝑘 +
∑

𝑗∈𝒮,𝑗 ∕=𝑘

√
𝑃𝑗𝑏𝑗(𝑛)G𝑘c𝑗 + y𝑘(𝑛),

𝑘 ∈ 𝒮, 𝑛 = 1, 2, . . . , (29)

where G𝑘 ∈ ℂ𝐿𝑀×𝐿 is the channel matrix constructed by
the multipath channel coefficients [𝑔𝑘,𝑀 , . . . , 𝑔𝑘,𝑀 ] between
the secondary transmitter and the 𝑘th secondary receiver and
y𝑘 represents comprehensively MAI from all primary users
plus AWGN. The autocorrelation matrix of y𝑘 is denoted by
R𝑘 ≜ E

{
y𝑘y

𝐻
𝑘

}
. The output SINR of the 𝑘th secondary

receiver filter w𝑚𝑎𝑥𝑆𝐼𝑁𝑅,𝑘 is given by

Γ𝑘 = 𝑃𝑘c
𝑇
𝑘G

𝐻
𝑘 R̃−1

𝑘 G𝑘c𝑘 (30)
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where

R̃𝑘 = G𝑘

⎛
⎝ ∑

𝑗∈𝒮,𝑗 ∕=𝑘

𝑃𝑗c𝑗c
𝑇
𝑗

⎞
⎠G𝐻

𝑘 +R𝑘 (31)

is the autocorrelation matrix of the combined channel dis-
turbance. To satisfy a certain QoS requirement, each active
secondary link is supposed to surpass a pre-determined SINR
value 𝛾𝑘 > 0, i.e. we need Γ𝑘 ≥ 𝛾𝑘 for each 𝑘 ∈ 𝒮. At the
same time, interference caused to the primary system needs to
be kept in check. To evaluate the interference introduced by
all active secondary links to the 𝑖th primary user, we define
the cumulative generalized correlation interference

ℐ𝑖 =
∑
𝑘∈𝒮

𝑃𝑘 ⋅ PTSC(c𝑘, s𝑖), 𝑖 = 1, . . . ,𝐾. (32)

Our objective is to maximize the number of active sec-
ondary links 𝐾𝑆 = ∣𝒮∣ under the constraints that each
secondary link achieves its pre-determined SINR 𝛾𝑘 and the
cumulative interference to each primary user is less than a
threshold ℐth > 0:

maximize 𝐾𝑆

s. t.Γ𝑘(c𝑘, 𝑃𝑘) ≥ 𝛾 ∀ 𝑘 ∈ 𝒮 andℐ𝑖 < ℐth ∀ 𝑖 = 1, . . . ,𝐾.(33)

This problem is, again, non-convex NP-hard. Motivated by the
single secondary link channelization algorithm of Table IV
(with active interference avoidance) in the previous section,
we propose instead to -centrally at the secondary transmitter
(base station) 𝑆𝑇 - successively activate one secondary link at
a time in a way that it introduces conditionally least cumulative
interference until the accumulated interference exceeds the
threshold ℐth for some primary user. The details of the
algorithm are described as follows. Initially set 𝒮 = ∅.
Utilizing the algorithm in Table IV, we individually eval-
uate each secondary link 𝑘 ∈ 𝒞 and obtain the signature
c𝑘, transmitting power 𝑃𝑘 , and the maximum generalized
interference value ℐ𝑚𝑎𝑥,𝑘 caused to a primary user by the
potential secondary link with design (c𝑘, 𝑃𝑘). Among the 𝑄
potential links, we select the one, say the 𝑡th secondary link,
which introduces least maximum generalized interference,
i.e. ℐ𝑚𝑎𝑥,𝑡 = 𝑚𝑖𝑛{ℐ𝑚𝑎𝑥,𝑘 : 𝑘 ∈ 𝒞}. If ℐ𝑚𝑎𝑥,𝑡 < ℐth,
the 𝑡th secondary link is turned on with code channel c𝑡
and power 𝑃𝑡; if link 𝑡 did go through, we continue on
examining the remaining 𝒞 − {𝑡} candidates by the algorithm
in Table IV under the cumulative generalized interference
metric in (32) since one secondary link is already activated.
Say potential secondary link 𝑧 ∈ 𝒞 − {𝑡} is the one with
ℐ𝑚𝑎𝑥,𝑧 = 𝑚𝑖𝑛{ℐ𝑚𝑎𝑥,𝑘 : 𝑘 ∈ 𝒞 − {𝑡}} and still ℐ𝑚𝑎𝑥,𝑧 < ℐth
(if ℐ𝑚𝑎𝑥,𝑧 ≥ ℐth, link 𝑧 is rejected and no further study is
required). Since the incoming secondary link 𝑧 also interferes
with the existing secondary link 𝑡 and may degrade its
output SINR below the minimum acceptable level, we adjust
iteratively the transmitting power of each secondary link by
calculating

𝑃𝑘 =
𝛾𝑘

c𝑇𝑘 G
𝐻
𝑘 R̃−1

𝑘 G𝑘c𝑘
, 𝑘 = 𝑡, 𝑧, (34)

until convergence is observed. With the updated powers, we
evaluate the cumulative generalized interference in (32) one
more time. If all ℐ𝑖, 𝑖 = 1, . . . ,𝐾, are below the threshold, the
𝑧th secondary link is turned on and we move on to identify

TABLE V
COGNITIVE CODE-DIVISION CHANNELIZATION FOR MULTIPLE

SECONDARY LINKS

𝒞 := {1, . . . , 𝑄}; 𝒮 := ∅.
While ∣𝒞∣ > 0

Calculate R̃𝑘 ∀𝑘 ∈ 𝒞 by (31).
Obtain 𝑃𝑘, c𝑘 ℐ𝑚𝑎𝑥,𝑘 ∀𝑘 ∈ 𝒞 by Table IV.
Find 𝑡 ∈ 𝒞 s. t. ℐ𝑚𝑎𝑥,𝑡 = 𝑚𝑖𝑛{ℐ𝑚𝑎𝑥,𝑘 : 𝑘 ∈ 𝒞}.
Update powers 𝑃𝑘 , 𝑘 ∈ {𝒮, 𝑡} by (34).
Calculate ℐ𝑖, 𝑖 = 1, . . . ,𝐾 , by (32) (with the updated powers).
If ℐ𝑖 < ℐth ∀ 𝑖 = 1, . . . , 𝐾 ,
𝒞 = 𝒞∖{𝑡}; 𝒮 = 𝒮∪{𝑡}.

else
𝒞 = ∅.

Endif
End
Output {(𝑃𝑗 , c𝑗) : 𝑗 ∈ 𝒮} (activated secondary channels).

additional secondary links with the same procedure; otherwise,
𝑧 is rejected and no more secondary link are allowed to share
the spectrum. The complete algorithm is summarized in Table
V.

VI. EXPERIMENTAL SIMULATION STUDIES

To illustrate the presented algorithmic developments, we
consider a primary multiuser CDMA system with 𝐾 active
users that utilize Gold signatures with length 𝐿 = 31. The
primary users’ signals are transmitted with equal per-user
power 𝐸1 = 𝐸2 = . . . = 𝐸𝐾 = 10dB over a multipath
Rayleigh fading channel with 𝑀 = 3 resolvable paths in
the presence of additive white Gaussian noise. At first, one
secondary link attempts to share the spectrum with target
receiver filter output SINR 𝛾 = 10dB.

The secondary link code channel and power are optimized
by the algorithm in Table III (passive interference suppression)
and Table IV (active interference avoidance). Specifically,
we utilize the rank-2 SINR-maximization binary signature
design method [26] and set the weighting factor for the
algorithm in Table IV to 𝛼 = 0.05. If the resulting maximum
generalized correlation interference is less than the threshold
ℐth, the secondary link is allowed to share the spectrum. The
simulation experiment is repeated 105 times. With varying
primary user population 𝐾 = 2, 10, 18, the probability of
coexistence of a secondary link is plotted in Fig. 5 as a
function of ℐth. While the Table III algorithm behaves -
arguably- satisfactorily, it can be observed that the active
interference avoidance algorithm of Table IV can significantly
enhance the opportunity of coexistence of a secondary link.

Next, under the same primary system simulation environ-
ment, we examine the problem of cognitive code-division
channelization for multiple secondary links. The receiver
output SINR requirement for each secondary link is set at
𝛾𝑗 = 10dB, 𝑗 = 1, 2, . . .. The average number of activated
secondary links by the algorithm in Table V is plotted in Fig.
6 as a function of the interference threshold ℐth for varying
primary user population 𝐾 . In Fig. 7, we plot the average
number of active secondary links versus the number of primary
users for varying interference threshold values ℐth. The exper-
iments demonstrate that the developed multiple secondary link
channelization method can effectively produce multiple active
secondary links and enhance spectrum efficiency.
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Fig. 6. Average number of activated secondary links by the algorithm in
Table V versus interference threshold ℐth for varying primary user population
𝐾 .

VII. CONCLUSIONS

We considered the general problem of establishing a sec-
ondary code-division link alongside a primary code-division
multiple-access system. We first developed a novel iterative
least square (ILS) based primary-system identification algo-
rithm which can blindly detect the code channels utilized by
primary users. Then, we proposed two alternative schemes,
one of low (passive scheme) and one of moderate (active
scheme) computational complexity that optimize transmitting
power and binary code-channel allocation of the secondary
link without causing “harmful” interference to the primary
users. At the same time, the signal-to-interference-plus-noise
ratio (SINR) of the secondary link at the output of the
maximum SINR linear receiver is no less than a certain
threshold to meet quality of service (QoS) requirements for
the secondary link. Finally, we extended the channelization
problem to multiple code-division secondary links.

Simulation results demonstrated that the proposed blind
identification algorithm can efficiently and effectively detect
primary users’ code channels and the proposed code-division
channelization methods can successfully allow secondary links
to opportunistically share the spectrum without causing harm-
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Fig. 7. Average number of secondary links versus number of primary users
𝐾 .

ful interference to primary users.
Cognitive code-division radios combine in principle the

bandwidth efficiency characteristics of cognitive operation
and code-division multiple accessing and are expected to
find a place in future communication systems. To that
extend, the developments presented in this paper constitute
an early contribution that can be helpful in benchmarking
future efforts. Since the developed herein coexistence-mode
cognitive networks do not require any prior knowledge about
the primary networks (such as signatures, transmission energy,
channel state information), the secondary networks can be
deployed transparently without any modification/upgrade of
the existing primary CDMA infrastructure.

APPENDIX A
DERIVATION OF ITERATIVE LEAST-SQUARES PROCEDURE

IN TABLE I

The LS cost function in (15) can be rewritten as

𝐽 = ∥Y −VB∥2𝐹 = tr
{
YY𝐻

}
− tr

{
YB𝐻V𝐻

}

−tr
{
VBY𝐻

}
+ tr

{
VBB𝐻V𝐻

}
(35)

where tr{⋅} denotes the trace of a matrix.
For a given B, the LS optimal estimate of V can be obtain

by differentiating the cost function 𝐽 with respect to V𝐻 and
setting the outcome equal to the zero matrix,

∂𝐽

∂V𝐻
= −YB𝐻 +V(BB𝐻) = 0⇒ V = YB𝐻(BB𝐻)−1.

(36)
Next, pretend that V is known and relax the domain of the

symbol information matrix to the complex space, B ∈ ℂ𝐾×𝑁 .
The LS optimal estimate of B ∈ ℂ𝐾×𝑁 can be calculated
again by differentiation

∂𝐽

∂B𝐻
= −V𝐻Y +V𝐻VB = 0⇒ B = (V𝐻V)−1V𝐻Y.

(37)
Finally, we project (quantize) the complex-valued LS estimate
B to the binary domain

B = sgn
{
ℜ𝔢

[
(V𝐻V)−1V𝐻Y

]}
. (38)

■
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